# Airborne mammary carcinogens and breast cancer risk in the Sister Study

Nicole Niehoff, PhD MSPH
Postdoctoral fellow
Environment and Cancer Epidemiology Group
National Institute of Environmental Health Sciences

Work from: **Niehoff NM**, Gammon MD, Keil AP, Nichols HB, Engel LS, Sandler DP\*, White AJ\*. Airborne mammary carcinogens and breast cancer risk in the Sister Study. *Environment International* 2019; 130.

#### Hazardous Air Toxics

- 187 pollutants that are known or suspected to be carcinogenic or cause other serious health or environmental effects
- Distinct from criteria air pollutants (PM, O<sub>3</sub>, CO, NO<sub>2</sub>, Pb, SO<sub>2</sub>)
- There are no nationwide ambient air quality standards for air toxics
- Numerous ambient sources:



EPA 2016, EPA 2017

# Consideration of Multipollutant Exposures

- Exposure does not occur to single pollutants in isolation
  - >Joint effects of multiple pollutants may increase severity
  - Exposures of interest may be correlated
- NIEHS (2011, 2015) and EPA (2016) have called interest to mixtures: EPA: "multi-pollutant control programs can save money and time, and achieve significant health, environmental and economic benefits, while reducing costs and burdens on sources of air pollution"
- There are a variety of methods available- it's important to specify what question you are interested in evaluating

# Biological Mechanisms: Air toxics and breast cancer



## Carcinogenic Air Toxics

- Published review identified 216 chemicals associated with mammary gland tumors in at least one animal study
  - ➤ 29 are air toxics and available in the most complete nationwide data source of modeled concentrations, the National Air Toxics Assessment (NATA)

| 1,2-Dibromo-3-              | Carbon                   | Polycyclic organic      |
|-----------------------------|--------------------------|-------------------------|
| chloropropane               | tetrachloride            | matter                  |
| 1,3-butadiene               | Chloroprene              | Propylene<br>dichloride |
| 1,4-dioxane                 | Ethylbenzene             | Propylene oxide         |
| 2,4-dinitrotoluene          | Ethylene dibromide       | Styrene                 |
| 2,4-toluene<br>diisocyanate | Ethylene oxide           | Toluene                 |
| 2-chloroacetophenone        | Ethylidene<br>dichloride | Vinyl chloride          |
| Acrylamide                  | Hydrazine                | Vinylidene chloride     |
| Acrylonitrile               | Methylene chloride       | Xylenes                 |
| Benzene                     | Nitrobenzene             |                         |
| Benzidine                   | o-Toluidine              |                         |

Rudel 2007

# The Sister Study

- Prospective observational cohort
  - 50,884 women, recruited from 2003-2009
  - Ages 35-74 at enrollment
  - Sister had been diagnosed with breast cancer, but no prior breast cancer diagnosis themselves at enrollment
- Excluded women without baseline address geocoded at census tractlevel for linkage to exposure data and women with breast cancer diagnosis before enrollment was complete → n=49,718 included
- 2,975 breast cancer events (invasive or ductal carcinoma *in situ*) through September 2016 (an average of 8.4 years after enrollment)



# Certain Air Toxics were Associated with an Increased Risk of Breast Cancer



7

# The Relationship Between Air Toxics and Breast Cancer was Stronger Among Overweight or Obese Individuals





10% of correlations >0.7 18% of correlations >0.5

Strongest: Ethylbenzene & xylenes

(r=0.98)

Weakest: Ethylene dibromide & xylenes

(0.001)

## Considering Air Toxics in Multipollutant Groups

 Goal: Examine whether there are combinations of pollutants that may be more are less harmful for breast cancer than would be expected based on exposure to a single pollutant

- Classification and Regression Trees (CART)
  - Classification trees: used for discrete outcomes (i.e. breast cancer)
  - ➤ Regression trees: used for continuous outcomes
  - >A forward-selection, recursive partitioning approach

#### Gini Index:

- Based on impurity functions
- Selects the variable resulting in binary groups that are most different with respect to the outcome
- Parent Node Splitting Independent Variable 1 Criteria NODE 2 NODE 3 Child Node Child Node Terminal Node 1 Independent Variable 2 Stopping NODE 4

Criteria

NODE 1

Child Node

Terminal Node 2

- Minimum # of cases in a node = 5
- Maximum number of levels on a branch = 5
- Total number of terminal nodes = 11

Lemon 2003, Loh 2011, Yohannes 1999

NODE 5

Child Node

Terminal Node 3

# Multipollutant Classification Tree



#### Conclusions

- Certain air toxics were associated with a higher risk of breast cancer
  - ➤ Methylene chloride, POM, propylene dichloride, and styrene
  - ➤ Biologically plausible: IARC group 1 or 2A; chromosomal instability, DNA damage, oxidative stress and inflammation, estrogenic
- These air toxics, with the exception of POM, were part of multipollutant groups that were identified in the classification tree
  - ➤ Methylene chloride was the highest on the tree
- Single pollutant analyses were stronger among those who were overweight or obese
  - ➤BMI was used in the formation of branches with certain air toxics on the classification tree

## **Impact**

- Ambient air toxic exposure is widespread
  - > Regulation of air toxics on a national scale is currently non-existent
  - > Estimation of air toxic concentrations has limitations
- Breast cancer is the most common cancer among women
- CART easily handles non-linear and non-additive associations
  - >Informed cut-points that may have been missed with traditional regression
  - ➤ Identified high levels that may be important, but may impact a small number of women
  - ➤ Investigator-driven parameters
- The findings from the classification tree may reflect harmful coexposures for breast cancer of interest for future evaluation

# Acknowledgements

#### Co-authors

Marilie Gammon, UNC
Alexander Keil, UNC/NIEHS
Hazel Nichols, UNC
Lawrence Engel, UNC
Dale Sandler, NIEHS
Alexandra White, NIEHS







#### Funding

Intramural research program at NIEHS Cancer Control Education Program (T32CA057726) NIEHS Environmental Training Grant (T32ES007018)

# Thank you!

Email: <u>nicole.niehoff@nih.gov</u>

Twitter: @nikkiniehoff

### Exposure Assessment: National Air Toxics Assessment

- NATA is the only nationwide data source for air toxics
- 2005 version of the NATA was used in this dissertation
  - > In the middle of the enrollment period for the Sister Study
  - > Incorporates important assessment changes compared to previous years
- Source categories:
  - Point (e.g. large factories, waste incinerators, airports)
  - > Non-point (e.g. prescribed burns, dry cleaners, small manufacturers)
  - > On-road mobile (e.g. cars, trucks, buses)
  - Non-road mobile (e.g. airport ground support, trains, boats)
  - ➤ Background and secondary formation



- -state and local inventories
- -existing databases from EPA regulatory programs
- -emission factors and activity data
- -revisions to source inventories from Risk and Technology Review
- -EPA analyses supporting standard development



#### **National Mobile Inventory Model (NMIM)**

- -consolidation of two models: Mobile Source Emission Factor Model (MOBILE) and NONROAD model
- -vehicle, activity, and fuel data from states and federal agencies



# **CART Splitting Criteria**

#### Gini improvement measure

- 1. Gini diversity index is calculated as  $2p_{ij}(1-p_{ilj})$  for the parent node and two child nodes
- 2. Weighted diversity index of the two child nodes based on the proportion of the observations that end up in each node from the parent node
- 3. Gini improvement measure= (parent node diversity index) (weighted diversity index)
- ➤ All exposure variables are examined and the one (and its cut-point) that leads to the highest value of the Gini improvement measure is selected as the splitting point

